Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities

نویسندگان

  • Sören Bartels
  • Rüdiger Müller
چکیده

Quasi-optimal a posteriori error estimates in L∞(0, T ;L2(Ω)) are derived for the finite element approximation of Allen-Cahn equations. The estimates depend on the inverse of a small parameter only in a low order polynomial and are valid past topological changes of the evolving interface. The error analysis employs an elliptic reconstruction of the approximate solution and applies to a large class of conforming, nonconforming, mixed, and discontinuous Galerkin methods. Numerical experiments illustrate the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust A Priori and A Posteriori Error Analysis for the Approximation of Allen-Cahn and Ginzburg-Landau Equations Past Topological Changes

A priori and a posteriori error estimates are derived for the numerical approximation of scalar and complex valued phase field models. Particular attention is devoted to the dependence of the estimates on a small parameter. For typical singularities the estimates depend on the inverse of the parameter in a polynomial as opposed to exponential dependence of estimates resulting from a straightfor...

متن کامل

Optimal and Robust A Posteriori Error Estimates in L

Optimal a posteriori error estimates in L∞(0, T ; L(Ω)) are derived for the finite element approximation of Allen-Cahn equations. The estimates depend on the inverse of a small parameter only in a low order polynomial and are valid past topological changes of the evolving interface. The error analysis employs an elliptic reconstruction of the approximate solution and applies to a large class of...

متن کامل

Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential

A fully computable upper bound for the finite element approximation error of Allen– Cahn and Cahn–Hilliard equations with logarithmic potentials is derived. Numerical experiments show that for the sharp interface limit this bound is robust past topological changes. Modifications of the abstract results to derive quasi-optimal error estimates in different norms for lowest order finite element me...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Robust a Priori and a Posteriori Error Analysis for the Approximation of Allen–cahn and Ginzburg–landau Equations Past

A priori and a posteriori error estimates are derived for the numerical approximation of scalar and complex valued phase field models. Particular attention is devoted to the dependence of the estimates on a small parameter and to the validity of the estimates in the presence of topological changes in the solution that represents singular points in the evolution. For typical singularities the es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2011